PLASMA DISPLAY PANEL DATA DRIVER

PRODUCT PREVIEW

- 64 OUTPUTS PLASMA DISPLAY DRIVER
- 170V ABSOLUTE MAXIMUM SUPPLY
- 5V SUPPLY FOR LOGIC
- 50/40mA SOURCE / SINK OUTPUT
- 60/60mA SOURCE / SINK OUTPUT DIODE
- 64-BIT SHIFT REGISTER (20MHz)
- BLK, POLARITY AND HIZ CONTROL
- BCD TECHNOLOGY
- DIE or 100-PIN PQFP PACKAGE

DESCRIPTION

The STV7699 is a Plasma Display Panel (PDP) data driver implemented in ST's proprietary BCD technology. Using a 4-bit wide cascadable shift register, it drives 64 high current \& high voltage outputs. By serialy connecting several STV7699, any horizontal pixel definition can be performed. The 20 MHz shift clock gives an equivalent 80 MHz shift register. The STV7699 is supplied with a separated 170V power output supply and a 5V logic supply.

All command inputs are CMOS compatible. The STV7699 package is a 100 -pin PQFP. It is also available as die.

PIN CONNECTIONS

PIN ASSIGNMENT (PQFP100)

Pin Number	Symbol	Type	Function
100	Vcc	Supply	5V Logic Supply
1-29-30-51-52-80	VPP	Supply	High Voltage Supply of power outputs
$\begin{gathered} 6-15-24-35-40 \\ 46-57-66-75 \end{gathered}$	VSSP	Ground	Ground of power outputs
90 to 93	$V_{\text {SSLOG }}$	Ground	Logic Ground
41-81	$V_{\text {SSSUB }}$	Ground	Substrate Ground
2 to $5-7$ to $14-16$ to 23 25 to $28-31$ to $34-36$ to 39 42 to $45-47$ to $50-53$ to 56 58 to 65-67 to 74-76 to 79	OUT1 to OUT 64	Output	Power Output
95	CLK	Input	Clock of data shift register Low to High transition makes the data enter into the shift register and available at the output stage and at the output of the shift register.
94	STB	Input	Latch of data to outputs When the STB signal is set to low level, data are transferred into the latch stage. When STB is set at high level, data are held in the latch stage.
88	$\overline{\text { BLK }}$	Input	Power Output Blanking Control
87	$\overline{\mathrm{POL}}$	Input	Power Output Polarity Control
86	$\overline{\mathrm{HIZ}}$	Input	Power Output High Impedance Control
89	$\overline{\mathrm{F}} / \mathrm{R}$	Input	Selection of shift direction
96 to 99	A4 to A1	Input	Shift register data input and output according to $\overline{\mathrm{F}} / \mathrm{R}$ value.
82 to 85	B1 to B4	Output	When set to low, $\mathrm{Ai}=$ input and $\mathrm{Bi}=$ output.

PIN ASSIGNMENT (Power Outputs)

Output ${ }^{\circ}$	Pin ${ }^{\circ}$						
1	2	17	20	33	42	49	62
2	3	18	21	34	43	50	63
3	4	19	22	35	44	51	64
4	5	20	23	36	45	52	65
5	7	21	25	37	47	53	67
6	8	22	26	38	48	54	68
7	9	23	27	39	48	55	69
8	10	24	28	40	50	56	70
9	11	25	31	41	53	57	71
10	12	26	32	42	54	58	72
11	13	27	33	43	55	59	73
12	14	28	34	44	56	60	74
13	16	29	36	45	58	61	76
14	17	30	37	46	59	62	77
15	18	31	38	47	60	63	78
16	19	32	39	48	61	64	79

PAD DIMENSIONS (in $\mu \mathrm{m}$)
The reference is the center of the die $(x=0, y=0)$.
LEFT SIDE from top to bottom

Name	Center $: \mathbf{X}$	Center $: \mathbf{Y}$	Size $: \mathbf{x}$	Size $: \mathbf{y}$
V	PP	-1738.0	2867.5	90.0
75.0				
OUT1	-1738.0	2703.0	90.0	75.0
OUT2	-1738.0	2570.5	90.0	75.0
OUT3	-1738.0	2411.0	90.0	75.0
OUT4	-1738.0	2228.5	90.0	75.0
V $_{\text {SSP }}$	-1738.0	2093.0	90.0	75.0
OUT5	-1738.0	1952.0	90.0	75.0
OUT6	-1738.0	1813.5	90.0	75.0
OUT7	-1738.0	1631.0	90.0	75.0
OUT8	-1738.0	1453.0	90.0	75.0
OUT9	-1738.0	1235.5	90.0	75.0
OUT10	-1738.0	1046.5	90.0	75.0
OUT11	-1738.0	862.0	90.0	75.0
OUT12	-1738.0	712.5	90.0	75.0
VSSP	-1738.0	566.0	90.0	75.0
OUT13	-1738.0	431.0	90.0	75.0
OUT14	-1738.0	293.0	90.0	75.0
OUT15	-1738.0	82.5	90.0	75.0
OUT16	-1738.0	-109.5	90.0	75.0
OUT17	-1738.0	-277.0	90.0	75.0
OUT18	-1738.0	-471.0	90.0	75.0
OUT19	-1738.0	-691.5	90.0	75.0
OUT20	-1738.0	-822.5	90.0	75.0
VSSP	-1738.0	-953.0	90.0	75.0
OUT21	-1738.0	-1096.0	90.0	75.0
OUT22	-1738.0	-1335.5	90.0	75.0
OUT23	-1738.0	-1569.0	90.0	75.0
OUT24	-1738.0	-1697.5	90.0	75.0
VPP 2	-1715.0	-2045.0	90.0	200.0

BOTTOM SIDE from left to right

Name	Center:	Center : \mathbf{Y}	Size $: \mathbf{x}$	Size $: \mathbf{y}$
OUT25	-1443.5	-3077.0	75.0	90.0
OUT26	-1249.0	-3077.0	75.0	90.0
OUT27	-1049.5	-3077.0	75.0	90.0
OUT28	-889.0	-3077.0	5.0	90.0
V $_{\text {SSP }}$	-753.0	-3077.0	75.0	90.0
OUT29	-614.0	-3077.0	75.0	90.0
OUT30	-467.5	-3077.0	75.0	90.0
OUT31	-332.0	-3077.0	75.0	90.0
OUT32	-186.5	-3077.0	75.0	90.0
V $_{\text {SSP }}$	-54.0	-3077.0	75.0	90.0
V $_{\text {SSUB }}$	78.0	-3077.0	75.0	90.0
OUT33	209.5	-3077.0	75.0	90.0
OUT34	342.5	-3077.0	75.0	90.0
OUT35	467.5	-3077.0	75.0	90.0
OUT36	607.5	-3077.0	75.0	90.0
VSSP	752.0	-3077.0	75.0	90.0
OUT37	892.5	-3077.0	75.0	90.0
OUT38	1045.5	-3077.0	75.0	90.0
OUT39	1252.0	-3077.0	75.0	90.0
OUT40	1433.5	-3077.0	75.0	90.0

Right SIDE from bottom to top

Name	Center $: \mathbf{X}$	Center $: \mathbf{Y}$	Size $: \mathbf{x}$	Size $: \mathbf{y}$
VPP	1600.5	-2087.0	90.0	200.0
OUT41	1737.5	-1646.0	90.0	75.0
OUT42	1737.5	-1507.0	90.0	75.0
OUT43	1737.5	-1328.0	90.0	75.0
OUT44	1737.5	-1096.0	90.0	75.0
V $_{\text {SSP }}$	1737.5	-953.0	90.0	75.0
OUT45	1737.5	-822.5	90.0	75.0
OUT46	1737.5	-691.5	90.0	75.0
OUT47	1737.5	-471.0	90.0	75.0
OUT48	1737.5	-277.0	90.0	75.0
OUT49	1737.5	-109.5	90.0	75.0
OUT50	1737.5	82.5	90.0	75.0
OUT51	1737.5	293.0	90.0	75.0
OUT52	1737.5	431.0	90.0	75.0
VSSP	1737.5	566.0	90.0	75.0
OUT53	1737.5	712.5	90.0	75.0
OUT54	1737.5	862.0	90.0	75.0
OUT55	1737.5	1046.5	90.0	75.0
OUT56	1737.5	1235.5	90.0	75.0
OUT57	1737.5	1453.0	90.0	75.0
OUT58	1737.5	1631.0	90.0	75.0
OUT59	1737.5	1813.5	90.0	75.0
OUT60	1737.5	1952.0	90.0	75.0
VSSP	1737.5	2093.0	90.0	75.0
OUT61	1737.5	2228.5	90.0	75.0
OUT62	1737.5	2411.0	90.0	75.0
OUT63	1737.5	2570.5	90.0	75.0
OUT64	1737.5	2703.0	90.0	75.0
VPP	1737.5	2873.5	90.0	75.0

TOP SIDE from right to left

Name	Center : X	Center : Y	Size : x	Size : y
V $_{\text {SSSUB }}$	1628.5	3073.5	75.0	90.0
B1	1478.5	3073.5	75.0	90.0
B2	1228.5	3077.0	75.0	90.0
B3	978.5	3077.0	75.0	90.0
B4	847.5	3077.0	75.0	90.0
HIZ	716.5	3077.0	75.0	90.0
$\overline{\text { POL }}$	486.5	3077.0	75.0	90.0
$\overline{\text { BLK }}$	355.5	3077.0	75.0	90.0
$\overline{\text { F/R }}$	224.5	3077.0	75.0	90.0
V SSLOG	31.0	3077.0	200.0	90.0
VSSLOG	-354.5	3077.0	200.0	90.0
STB	-582.0	3077.0	75.0	90.0
CLK	-713.0	3077.0	75.0	90.0
A4	-844.0	3077.0	75.0	90.0
A3	-975.0	3077.0	75.0	90.0
A2	-1106.0	3077.0	75.0	90.0
A1	-1471.5	3077.0	75.0	90.0
VCC	-1629.0	3077.0	75.0	90.0

BLOCK DIAGRAM

CIRCUIT DESCRIPTION

The STV7699 contains all the logic and the power circuits necessary to drive the colums of a Plasma Display Panel (P.D.P.). Data are shifted at each low to high transition of the (CLK) shift clock. Data are input in a 4-bit wide data bus to A1-A4 input (case of forward shift mode; $\bar{F} / R=$ low). After 16 shifts, the first nibble is available at the serial outputs B1-B4. These outputs can be used to cascade several drivers to performed any horizontal resolution. CLK, Ai and Bi inputs are Smith trigger inputs to improve the noise margin.
The $\overline{\text { Forward }} /$ Reverse ($\overline{\mathrm{F}} / \mathrm{R}$) input is used to select the direction of the shift register.
The maximum frequency of the shift clock is 20MHz.
All the output data are held and memorized into the latch stage when the Latch input (STB) is high. When it is at low level, data are transferred from the shift register to the latch and to the output power stage.
Output state can be forced to high impedance by pulling low HIZ input.
When $\overline{B L K}$ is Low, all the outputs are forced to low level or high level according to POL signal value.
Output state copy data that was input, with the
same polarity, when $\overline{\mathrm{BLK}}, \overline{\mathrm{HIZ}}$ and $\overline{\mathrm{POL}}$ are High. Vsslog, Vsssub and Vssp are not internally connected.
VSSLog and VSSSUB must be connected as close as possible to the logical reference ground of the application.
Table 1 : Power Output Truth Table

Data	STB	$\overline{\text { POL }}$	$\overline{\text { BLK }}$	$\overline{\text { HIZ }}$	Driver Output	Comments
x	x	x	x	L	$\overline{\mathrm{HIZ}}$	High impedance
x	x	L	x	H	L	Forced to low
x	x	H	L	H	H	Forced to high
x	H	H	H	H	Qn (1)	Latched data
L	L	H	H	H	L	Copy data
H	L	H	H	H	H	Copy data

Note 1: Qn is the value memorised in the latch stage ; it is the value of the parallel shift register output stage after n Clock pulses.
A data loaded in the shift register is read on the output power stage without inversion of its polarity.
Table 2 : Control Table

$\overline{\mathbf{F}} / \mathbf{R}$	$\mathbf{A i}$	$\mathbf{B i}$	Comments
L	Input	Output	Forward shift
H	Output	Input	Reverse shift

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	Logic Supply	-0.3, +7	V
$\mathrm{V}_{\text {IN }}$	Logic Input Voltage	-0.3, $\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {OUT }}$	Logic Output Voltage	-0.3, $V_{C C}+0.3$	V
V POUT	Driver Output Voltage	-0.3, +170	V
VPP	Driver Power Supply	-0.3, +170	V
Ipout	Driver Output Current (2)	± 60	mA
IDOUT	Diode Output Current (2)	+40/-50	mA
$\mathrm{T}_{\text {jmax }}$	Junction Temperature	+150	${ }^{\circ} \mathrm{C}$
Toper	Operating Temperature	-20, +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	$-50,+150$	${ }^{\circ} \mathrm{C}$

THERMAL DATA

Symbol	Parameter	Value	Unit	
$\mathrm{R}_{\text {th }(j-a)}$	Junction-ambient Thermal Resistance (1)	Max.	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{P}_{\text {oper }}$	Operating Power Dissipation $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$	Max.	2	W
$\mathrm{~T}_{\text {joper }}$	Operating Junction Temperature (1)	Max.	+125	${ }^{\circ}$

Notes : 1. For PQFP100 packaging.
2. Through all power outputs : with power dissipation lower or equal than $P_{\text {tot }}$ and junction temperature lower or equal than $T_{j m a x}$.

ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=160 \mathrm{~V}, \mathrm{~V}_{\text {SSP }}=0 \mathrm{~V}, \mathrm{~V}_{\text {SSLOG }}=0 \mathrm{~V}, \mathrm{~V}_{\text {SSSUB }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{f}\right.$ CLK $=20 \mathrm{MHz}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
SUPPLY						
$\mathrm{V}_{\text {cc }}$	Logic Supply Voltage		4.5	5	5.5	V
$\mathrm{I}_{\mathrm{CCH}}$	Logic Supply Current		-	-	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCL }}$	Logic Supply Current	$\mathrm{f}_{\text {CLK }}=20 \mathrm{MHz}$	-	12	TBD	mA
VPP	Power Output Supply Voltage		-	-	160	V
IPPH	Power Output Supply Current (steady outputs)		-	-	100	$\mu \mathrm{A}$

OUTPUT

OUT1-OUT64						
$\mathrm{V}_{\text {POUTH }}$	Power Output High Level	$\begin{aligned} & I_{\text {POUTH }}=-10 \mathrm{~mA}, V_{\mathrm{PP}}=65 \mathrm{~V} \\ & l_{\text {POUTH }}=-40 \mathrm{~mA}, V_{\mathrm{PP}}=65 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 55 \\ T B D \end{gathered}$	60 -		V
$\mathrm{V}_{\text {POUTL }}$	Power Output Low Level	$\begin{aligned} & \text { IPOUTL }=+10 \mathrm{~mA} \\ & \text { lpoutL }=+30 \mathrm{~mA} \end{aligned}$		$\begin{gathered} \hline 2 \\ 12 \end{gathered}$	$\begin{gathered} 5 \\ \text { TBD } \end{gathered}$	V
$\mathrm{V}_{\text {DOUTH }}$	Output Diode High Level	$\mathrm{I}_{\text {DOUTH }}=+25 \mathrm{~mA} \mathrm{(3)(4)}$	-	-	3	V
$\mathrm{V}_{\text {DOUTL }}$	Output Diode Low Level	$\mathrm{I}_{\text {DOUTL }}=-25 \mathrm{~mA}(3)(4)$	-	-	-3	V
louthiz	Output Stage Leakage Current on $\overline{\text { HIZ }}$ State		-	-	± 10	$\mu \mathrm{A}$
SHIFT REGISTER OUTPUT (Ai or Bi according to $\overline{\mathrm{F}} / \mathrm{R}$ Status)						
V_{OH}	Logic Output High Level	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	4	-	-	V
Vol	Logic Output Low Level	$\mathrm{loL}=+0.5 \mathrm{~mA}$	-	0.1	0.3	V

INPUT (CLK, STB, $\overline{B L K}, \overline{H I Z}$, Ai, Bi)

V_{IH}	Input High Level		$0.8 \mathrm{~V}_{\mathrm{CC}}$	-	-	V
V_{IL}	Input Low Level		-	-	$0.2 \mathrm{~V}_{\mathrm{CC}}$	V
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$	-	-	1	$\mu \mathrm{~A}$
I_{IL}	Low Level Input Current	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	-	-	-1	$\mu \mathrm{~A}$

Notes: 3. Compatible with power dissipation and $\mathrm{T}_{\text {joper }} \leq 125^{\circ} \mathrm{C}$.
4. See test diagram.

AC TIMINGS REQUIREMENTS

$\left(\mathrm{VCC}=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=-20$ to $+85^{\circ} \mathrm{C}$, input signals max leading edge \& trailing edge $\left(\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}\right)=10 \mathrm{~ns}$)

Symbol	Parameter	Min.	Typ.	Max.	Unit
tclk	Data Clock Period	50	-	-	ns
twhclk	Duration of clock (CLK) pulse at high level	15	-	-	ns
twlclk	Duration of clock (CLK) pulse at low level	15	-	-	ns
tsdat	Set-up Time of data input before clock (low to high) transition	0	-	-	ns
thdat	Hold Time of data input after clock (low to high) transition	15	-	-	ns
tostb	Minimum Delay to latch (STB) after clock (low to high) transition	20	-	-	ns
tstв	Latch (STB) Low Level Pulse Duration	10	-	-	ns
tblk	Blanking ($\overline{\mathrm{BLK}}$) Pulse Duration	100	-	-	ns
tpol	Polarity ($\overline{\mathrm{POL}})$ Pulse Duration	100	-	-	ns
$\mathrm{t}_{\text {HIZ }}$	High Impedance (HIZ) Pulse Duration	100	-	-	ns
tsFR	Set-up Time of ForwardReverse Signal before Clock (low to high) transition	100	-	-	ns

AC TIMING CHARACTERISTICS

 $\mathrm{V}_{\mathrm{OH}}=4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$, unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
tclk	Data Clock Period	50		-	ns
trdat	Logical Data Output Rise Time	-	TBD	30	ns
$\mathrm{t}_{\text {fDAT }}$	Logical Data Output Fall Time	-	TBD	30	ns
$t_{\text {PHL1 }}$ tpLH1	Delay of logic data output (high to low transition) after clock (CLK) transition Delay of logic data output (low to high transition) after clock (CLK) transition		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	ns
$\begin{aligned} & \mathrm{tpHL2} \\ & \text { tpLH2 } \end{aligned}$	Delay of power output change (high to low transition) after clock (CLK) transition Delay of power output change (low to high transition) after clock (CLK) transition	-	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	ns ns
$\begin{aligned} & \text { tpHL3 } \\ & \text { tpLH3 } \end{aligned}$	Delay of power output change (high to low transition) after Latch (STB) transition Delay of power output change (low to high transition) after Latch (STB) transition		$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	ns
tpHL4 tpLH4	Delay of power output change (high to low transition) to Blank ($\overline{\mathrm{BLK}}$) or Polarity (POL) transition Delay of power output change (low to high transition) to Blank ($\overline{\mathrm{BLK}}$) or Polarity (POL) transition	-	TBD	100 100	ns
$\begin{aligned} & \mathrm{t} \text { tHZ5 } \\ & \mathrm{tpLZ5} \end{aligned}$	Delay of power output change (high to Hi-Z transition) after high impedance (ㅐZㅡ) (5) Delay of power output change (low to Hi -Z transition) after high impedance (HIZ) (5)	-	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \hline \text { tpzH5 } \\ & \text { tPZL5 } \end{aligned}$	Delay of power output change (Hi-Z to high transition) after high impedance ($\overline{\mathrm{HIZ}})(5)$ Delay of power output change (Hi-Z to low transition) after high impedance (HIZ) (5)	-	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$
trout	Power Output Rise Time (6)	-	-	150	ns
trout	Power Output Fall Time (6)	-	-	150	ns

Notes: 5. See test diagram.
6. One output among 64, loading capacitor Cout $=50 \mathrm{pF}$, other outputs at low level.

Figure 1 : AC Characteristics Waveform

INPUT/OUTPUT SCHEMATICS

Figure 2 : $\bar{F} / R, \overline{B L K}, \overline{P O L}, \overline{\mathrm{HIZ}}$

Figure 4 : Ai, Bi

Figure 3 : CLK, STB

Figure 5 : Power Output

PACKAGE MECHANICAL DATA

100 PINS - PLASTIC QUAD FLAT PACK (PQFP)

Dimensions	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			3.40			0.134
A1	0.25			0.010		
A2	2.55	2.80	3.05	0.100	0.110	0.120
B	0.22		0.38	0.0087		0.015
C	0.13		0.23	0.005		0.009
D	22.95	23.20	23.45	0.903	0.913	0.923
D1	19.90	20.00	20.10	0.783	0.787	0.791
D3		18.85			0.742	
e		0.65			0.026	
E	16.95	17.20	17.45	0.667	0.677	0.687
E1	13.90	14.00	14.10	0.547	0.551	0.555
E3		12.35			0.486	
L	0.65	0.80	0.95	0.026	0.031	0.037
L1		1.60			0.063	
K	0° (Min.), 7^{0} (Max.)					

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 1999 STMicroelectronics - All Rights Reserved
Purchase of $I^{2} C$ Components of STMicroelectronics, conveys a license under the Philips $I^{2} C$ Patent. Rights to use these components in $\mathrm{II}^{2} \mathrm{C}$ system, is granted provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specifications as defined by Philips.

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
http://www.st.com

